Cubic Spline Interpolation
ERROR:
Number of decimals:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
EQUATIONS
$$ f(x) = \begin{cases} ax^2 + bx + c = 0 & \text{if } 0≤x≤1\\ ax^2 + bx + c = 0 & \text{if } 0≤x≤1\\ ax^2 + bx + c = 0 & \text{if } 0≤x≤1\\ \end{cases} $$
STEPS
Step 1
$$ x = \left[ \begin{array}- 1 & \frac{2}{3} & 1 & 2 \end{array} \right] $$
$$ y = \left[ \begin{array}- 4 & -4 & -\frac{7}{2} & -\frac{1}{2} \end{array} \right] $$
$$ h_i=x_{i+1}-x_i\quad\text{for all }x_i\in{x} $$
$$ h_{1} = \frac{2}{3} $$
$$ h_{2} = \frac{1}{3} $$
$$ h_{3} = 1 $$
Step 2
$$ \frac{h_i}{6}a_{i-1} +\frac{h_i+h_{i+1}}{3}a_i +\frac{h_{i+1}}{6}a_{i+1} =\frac{y_{i+2}-y_{i+1}}{h_{i+1}} -\frac{y_{i+1}-y_i}{h_i} \quad(i=1,...,n-2) $$
$$ \text{i = 1: } \quad\frac{1}{9}a_0+\frac{1}{3}a_1+\frac{1}{18}a_2 =\frac{-\frac{7}{2}-\left(-4\right)}{\frac{1}{3}}-\frac{-4-4}{\frac{2}{3}} =\frac{27}{2} $$
$$ \text{i = 2: } \quad\frac{1}{18}a_1+\frac{4}{9}a_2+\frac{1}{6}a_3 =\frac{-\frac{1}{2}-\left(-\frac{7}{2}\right)}{1}-\frac{-\frac{7}{2}-\left(-4\right)}{\frac{1}{3}} =\frac{3}{2} $$
Step 3
$$ \text{Let } a_0=a_{n}=0 $$
Set up matrix:
$$ \left[ \begin{array}{cccc|c} 0 & \frac{1}{3} & \frac{1}{18} & 0 & \frac{27}{2} \\ 0 & \frac{1}{18} & \frac{4}{9} & 0 & \frac{3}{2} \\ \end{array} \right] $$
Reduced Row Echelon Form:
$$ \left[ \begin{array}{cccc|c} 0 & 1 & 0 & 0 & 40.7872 \\ 0 & 0 & 1 & 0 & 1.7234 \\ \end{array} \right] $$
$$ a_0 = 0 \quad a_1 = 40.7872 \quad a_2 = -1.7234 \quad a_3 = 0 $$
Step 4
$$ b_i=\frac{y_i}{h_i}-\frac{a_{i-1}h_i}{6} $$
$$ b_1=\frac{4}{\frac{2}{3}}-\frac{0}{6}=6 $$
$$ b_2=\frac{-4}{\frac{1}{3}}-\frac{40.7872\cdot \frac{1}{3}}{6}=-14.2660 $$
$$ b_3=-\frac{7}{2}-\frac{-1.7234\cdot 1}{6}=-3.2128 $$
Step 5
$$ c_i=\frac{y_{i+1}}{h_i}-\frac{a_ih_i}{6} $$
$$ c_1=\frac{-4}{\frac{2}{3}}-\frac{40.7872\cdot \frac{2}{3}}{6}=-10.5319 $$
$$ c_2=\frac{-\frac{7}{2}}{\frac{1}{3}}-\frac{-1.7234\cdot \frac{1}{3}}{6}=-10.4043 $$
$$ c_3=-\frac{1}{2}-\frac{0}{6}=-\frac{1}{2} $$
Piece Together
$$ a_0\frac{\left(x_2-x\right)^3}{6h_1}+a_1\frac{\left(x-x_1\right)^3}{6h_1}+b_1\left(x_2-x\right)+c_1\left(x-x_1\right) $$